
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.

6 - 11 General Solution
Find a general solution of the ODE y’’+ω2y = r(t)
with r(t) as given below.

6. r(t) = sin αt + sin βt, ω2 ≠ α2, β2

Clear["Global`*⋆"]

r[t_] := Sin[αt] + Sin[βt] /∕; ω2 ≠ α2, ω2 ≠ β2

DSolvey''[t] + ω2 y[t] ⩵ r[t], y[t], t

y[t] → C[1] Cos[t ω] + Cos[t ω] 
1

t
-−
r[K[1]] Sin[ω K[1]]

ω
ⅆK[1] +

C[2] Sin[t ω] + 
1

t Cos[ω K[2]] r[K[2]]

ω
ⅆK[2] Sin[t ω]

An even-numbered problem. Is the answer correct? Can’t check it.

7. r(t) = sin t, ω = 0.5, 0.9, 1.1, 1.5, 10

Clear["Global`*⋆"]

r[t_] := Sin[t]
eq1 = DSolvey''[t] + ω2 y[t] ⩵ r[t], y[t], t

y[t] → C[1] Cos[t ω] + C[2] Sin[t ω] +
Cos[t ω]2 Sin[t] + Sin[t] Sin[t ω]2

-−1 + ω2


eq2 = eq1 /∕.
Cos[t ω]2 Sin[t] + Sin[t] Sin[t ω]2

-−1 + ω2
→
Sin[t]

-−1 + ω2

y[t] → C[1] Cos[t ω] +
Sin[t]

-−1 + ω2
+ C[2] Sin[t ω]

Above: making a trig identity substitution by hand to conform the green cell to the text 
answer. The sequence of ω s makes it look like a table could be built, but not of the solution 
function, because the arbitrary constants blur everything. Instead the text focuses on the 
particle 1

-−1+ω2 , listing the calculated values for each ω.

ome[ω_] =
1

-−1 + ω2

1

-−1 + ω2



m = Table[ome[ω], {ω, {0.5, 0.9, 1.1, 1.5, 10}}]

-−1.33333, -−5.26316, 4.7619, 0.8,
1

99


NTableForm{0.5, -−1.3333333333333333`}, {0.9, -−5.263157894736843`},

{1.1, 4.761904761904757`}, {1.5, 0.8`}, 10,
1

99
,

TableHeadings → {{}, {"ω", "m[ω]"}}

ω m[ω]
0.5 -−1.33333
0.9 -−5.26316
1.1 4.7619
1.5 0.8
10. 0.010101

The above matches the text, though the table construction seemed more time-consuming 
than profitable.

11.  r(t) =  -−1 if -−π < t < 0
1 if 0 < t < π

ω ≠ 1, 3, 5, ...

Clear["Global`*⋆"]

r[t_] = Piecewise[{{-−1, -−π < t < 0}, {1, 0 < t < π}}]

-−1 -−π < t < 0
1 0 < t < π
0 True

First r[t] is considered by finding its Fourier series.
e3 = ExpToTrig[

FourierSeries[Piecewise[{{-−1, -−π < t < 0}, {1, 0 < t < π}}], t, 6]]

4 Sin[t]

π
+
4 Sin[3 t]

3 π
+
4 Sin[5 t]

5 π

The above doesn' t look bad at all. The general term is 4
n π Sin[n t],

with n = 1, 3, 5 ... In the text example,
the general term of the Fourier series is set equal to the ODE without apology,
so I will do it too. At this point in the problem,
I am supposed to switch over to considering the ODE,
including that series general term for r[t].

eq1 = FullSimplifyDSolvey''[t] + ω2 y[t] ⩵
4

n π
Sin[n t], y[t], t

y[t] → C[1] Cos[t ω] -−
4 Sin[n t]

n3 π -− n π ω2
+ C[2] Sin[t ω]
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eq11 = eq1 /∕. n → 1

y[t] → C[1] Cos[t ω] -−
4 Sin[t]

π -− π ω2
+ C[2] Sin[t ω]

eq13 = eq1 /∕. n → 3

y[t] → C[1] Cos[t ω] -−
4 Sin[3 t]

27 π -− 3 π ω2
+ C[2] Sin[t ω]

eq15 = eq1 /∕. n → 5

y[t] → C[1] Cos[t ω] -−
4 Sin[5 t]

125 π -− 5 π ω2
+ C[2] Sin[t ω]

This seemed to be going so well. But I could not (quite) get to the text answer. The yellow 
cells should show the text answer, but the central term of the text answer presents the 
model 4

π
Sin[n t]

ω2-−(4 n-−1)2 ,  instead of the yellow 4
n π

Sin[n t]
n2-−ω2 , and I don’t understand this result. I 

checked the integration in Symbolab, and it agreed with Mathematica as far as the integra-
tion is concerned. Certainly it is possible the text answer is correct.

13 - 16 Steady-State Damped Oscillations
Find the steady-state oscillations of y’’+cy’+y = r(t) with c>0 and r(t) as given. Note 
that the spring constant is k=1. Show the details. In probs. 14 - 16 sketch r(t).

13. r(t) = ∑n=1
N (an cos nt + bn sin nt)

Clear["Global`*⋆"]

Here r[t] is already a series. r[t_] = ∑n=1
N (a Cos[n t] + b Sin[n t]). Using a method 

seen in the solutions manual, I will drop the subscripts of the coefficients a and b. (This 
problem is being solved after finishing problem 15, for which s.m. assistance was available.) 
I will consider r[t] to be a single term of the series.
r[t_] = a Cos[n t] + b Sin[n t]

a Cos[n t] + b Sin[n t]

r'[t]

b n Cos[n t] -− a n Sin[n t]

r''[t]

-−a n2 Cos[n t] -− b n2 Sin[n t]
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partic = r''[t] + c r'[t] + r[t]

a Cos[n t] -− a n2 Cos[n t] + b Sin[n t] -−
b n2 Sin[n t] + c (b n Cos[n t] -− a n Sin[n t])

eq1 = Simplify[partic]

a + b c n -− a n2 Cos[n t] + b -− a c n -− b n2 Sin[n t]

For this problem, evidently the RHS will have both sine and cosine terms. The value of N is 
unknown, but it could encompass any number of 2π cycles. The coefficients must keep the 
same ratios at all points of the trig circle, so I take the guess that An will be solved when the 
function is at zero (cosine function is max), and Bn will be solved
when the function is at π/2 (sine function is max). So eq2 will be for An:

eq2 = Solvea + b *⋆ c *⋆ n -− a *⋆ n2 ⩵ 1, b -− a *⋆ c *⋆ n -− b *⋆ n2 ⩵ 0, {a, b}

a → -−
-−1 + n2

1 -− 2 n2 + c2 n2 + n4
, b →

c n

1 -− 2 n2 + c2 n2 + n4


To assemble An I suppose that all I need to do is multiply the numerators by the relevant 
coefficients and add these two together. (I can already check the ' Dn ' value, the denomina-
tor, with the text and confirm that it agrees.)

bigA = Simplify-−
-−1 + n2 asubn

1 -− 2 n2 + c2 n2 + n4
+

(c n) bsubn

1 -− 2 n2 + c2 n2 + n4


asubn + bsubn c n -− asubn n2

1 + -−2 + c2 n2 + n4

The method works for An above, which agrees with the text. Now to try to figure out Bn, 
which I predict must come into alignment at trig π/2:

eq3 = Solvea + b *⋆ c *⋆ n -− a *⋆ n2 ⩵ 0, b -− a *⋆ c *⋆ n -− b *⋆ n2 ⩵ -−1, {a, b}

a →
c n

1 -− 2 n2 + c2 n2 + n4
, b → -−

1 -− n2

1 -− 2 n2 + c2 n2 + n4


BigB = Simplify
(c n) asubn

1 -− 2 n2 + c2 n2 + n4
-−

-−1 + n2 bsubn

1 -− 2 n2 + c2 n2 + n4


bsubn + asubn c n -− bsubn n2

1 + -−2 + c2 n2 + n4

The method works for Bn too, except that in order to get the sign of an to agree with the text, 
it was necessary to choose -π/2 as the point of evaluation, so that the an part of the Bn 
ensemble could be positive in sign. I don’t know how to interpret that requirement.
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Plot[ Cos[ t] + Sin[ t], {t, -−2 π, 2 π}, PlotStyle → Thickness[0.004]]

-−6 -−4 -−2 2 4 6

-−1.5

-−1.0

-−0.5

0.5

1.0

1.5

The plot (above) does not look quite as expected. I feel I should emphasize that the 
described solution method is largely speculation.

15. r(t) =  tπ2 -− t2  if -π<t<π , and r(t+2π) = r(t)

This problem is covered in the s.m.. The observation, made there and visible from the prob-
lem description, is that the function r[t] is odd and that the function’s cycle is 2π. At this 
point I check the Fourier series.
Clear["Global`*⋆"]

eq1 = FourierSeriest π2 -− t2, t, 1

6 ⅈ ⅇ-−ⅈ t -− 6 ⅈ ⅇⅈ t

eq2 = ExpToTrig6 ⅈ ⅇ-−ⅈ t -− 6 ⅈ ⅇⅈ t

12 Sin[t]

So at this point I know the form of the output series. No cosine term. I don’t take the ‘12’ 
too seriously, it is still subject to some variation.

The method of finding a particular solution in example 1 on p. 493 sees it as y’’+-
cy’+y=bn sin nt.  Here the s.m. makes reference to example 1, where in a similar situation 
the yp is set to y= A cos nt + B sin nt. The motivation for this is an entry in Table 2.1, p. 
82, “Method of Undetermined Coefficients, where, upon finding r[t] equal to k sin ωx, a 
preliminary choice for yp(x) is taken as K cos ωx +M sin ωx. So at this point I have [1]: y=A 
cos nt + B sin nt, and I go on to assign [2]: y’=-A sin nt + B cos nt, and also [3]: y’’=-A cos 
nt -B sin nt.
partic = (y''[t] + c y'[t] + y[t])

y[t] + c y′[t] + y′′[t]

partic is the LHS
r[t] = A Cos[n t] + B Sin[n t] +

c (-−n A Sin[n t] + n B Cos[n t]) -− n2 A Cos[n t] -− n2 B Sin[n t]

A Cos[n t] -− A n2 Cos[n t] + B Sin[n t] -−
B n2 Sin[n t] + c (B n Cos[n t] -− A n Sin[n t])
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r[t] is the consolidation of plugging values of the 3 equations into LHS and adding them up.
Simplify[r[t]]

A + B c n -− A n2 Cos[n t] + B -− A c n -− B n2 Sin[n t]

Now it is time to solve for coefficients of the r[t] complex.  Final coefficient of cosine must 
be zero (since it doesn’t appear in final r) and final coefficient of sine must be bn. As for n, it 
can vary in series fashion. It is necessary to humor Mathematica a bit, as for instance not 
using variables beginning with captitals, and, for just this once, eschewing subscripts (m is 
standing in for bn);

eq3 = Solvea + b *⋆ c *⋆ n -− a *⋆ n2 ⩵ 0, b -− a *⋆ c *⋆ n -− b *⋆ n2 ⩵ m, {a, b}

a → -−
c m n

1 -− 2 n2 + c2 n2 + n4
, b → -−

m -−1 + n2

1 -− 2 n2 + c2 n2 + n4


Solve does the solve thing, and sets the denominator to the correct value of Dn. In the cell 
below, it will be done in the determinant way.

dee = Det
1 -− n2 c n
-−c n 1 -− n2



1 -− 2 n2 + c2 n2 + n4

The s.m. now goes on to find A and B, using determinants, but will it thereby find what 
Solve came up with above? The current step is to find bn, which Mathematica has not yet 
found, and which it cannot find by modifying eq3 for the search. But the s.m. goes back to a 
table on page 487, where is says that an odd function with period 2π should follow the 
formula bn = 2

π ∫0
2 π f(x) sin nx ⅆx and n = 1, 2, ... Okay, I’ll follow.

bn =
2

π
Integratet π2 -− t2 Sin[n t], {t, 0, π}

2 -−6 n π Cos[n π] -− 2 -−3 + n2 π2 Sin[n π]

n4 π

int = bn /∕. Cos[n π] → (-−1)n

2 -−6 (-−1)n n π -− 2 -−3 + n2 π2 Sin[n π]

n4 π

bn = int /∕. Sin[n π] → 0

-−
12 (-−1)n

n3

With two invaluable trig substitutions provided by s.m., bn is determined, above, green. I 
now have the value of ‘m’ in eq3, and I want to use it to find the total A, using the numera-
tor of the ‘a’ part of eq3.
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With two invaluable trig substitutions provided by s.m., bn is determined, above, green. I 
now have the value of ‘m’ in eq3, and I want to use it to find the total A, using the numera-
tor of the ‘a’ part of eq3.
aaa = -−cn (bn)

-−cn bn

aaaa = aaa /∕. bn -−> -−
12 (-−1)n

n3

12 (-−1)n cn

n3

aaaaa = aaaa /∕ dee

12 (-−1)n cn

n3 1 -− 2 n2 + c2 n2 + n4

Above is the final value of A, which agrees with the text answer.

bbb = -− -−1 + n2 bn

1 -− n2 bn

bbbb = bbb /∕. bn → -−
12 (-−1)n

n3

-−
12 (-−1)n 1 -− n2

n3

bbbbb = bbbb /∕ dee

-−
12 (-−1)n 1 -− n2

n3 1 -− 2 n2 + c2 n2 + n4

Above is the final answer of B, which agrees with the text answer. (Note that (-1)n resolves 
to (-1)n+1.) This problem also requires a sketch of r[t].

rtplot = Plott π2 -− t2, {t, -−π, π}, PlotStyle → Thickness[0.002]

-−3 -−2 -−1 1 2 3

-−10

-−5

5

10

17 - 19 RLC-circuit.
Find the steady state current I(t) in the RLC-circuit in figure 275, where R=10 Ω, L=1 H, 
C=10-−1 F and with E(t) V as follows and periodic with period 2π. Graph or sketch the 
first four partial sums. Note that the coefficients of the solution decrease rapidly. Hint. 
Remember that the ODE contains E ' (t), not E(t), cf. section 2.9.
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17 - 19 RLC-circuit.
Find the steady state current I(t) in the RLC-circuit in figure 275, where R=10 Ω, L=1 H, 
C=10-−1 F and with E(t) V as follows and periodic with period 2π. Graph or sketch the 
first four partial sums. Note that the coefficients of the solution decrease rapidly. Hint. 
Remember that the ODE contains E ' (t), not E(t), cf. section 2.9.

E(t)

R

L

RLC-−circuit (after Fig. 275)

C

17. E[t] = Piecewise-−50 t2, -−π < t < 0, 50 t2, 0 < t < π

In[80]:= Clear["Global`*⋆"]

First, setting up the electrical state space model just as if the domain were not piecewise.

In[81]:= eqns = eL q''[t] + aR q'[t] +
1

cC
q[t] ⩵ Vee[t];

In[84]:= m1 = StateSpaceModel[eqns,
{{q[t], 0}, {q'[t], 0}}, {{Vee[t], 0}}, {q'[t]}, t]

Out[84]=

0 1 0

-−
1

cC eL
-−
aR

eL

1

eL
0 1 0

𝒮

And putting in the capacitance, inductance, and resistance from the problem description.
In[85]:= mw = m1 /∕. {cC → 0.1, eL → 1, aR → 10}

Out[85]=

0 1 0
-−10. -−10 1
0 1 0

𝒮

And getting an output response for the interval where the voltage is negative. Note that this 
is in an interval where t is negative. What does a negative time value represent? I don’t 
really blame Mathematica for dumping the output into a single point, probably zero.

In[86]:= outz = OutputResponse{mw}, -−50 t2, {t, -−π, 0}

Out[86]= InterpolatingFunction Domain: {{0., 0.}}
Output: scalar

[t]
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And another output response for the interval where the voltage (and time) is positive.

In[90]:= outzp = OutputResponse{mw}, 50 t2, {t, 0, π}

Out[90]= InterpolatingFunction Domain: {{0., 3.14}}
Output: scalar

[t]

And devising a plot for the positive t section. If this was a serious project, I would look into 
the possibility of moving everything to the right so that all time values would be positive.

In[92]:= p1 = Plot[{outzp}, {t, 0, π}, ImageSize → 350,
AspectRatio → 0.4, PlotRange → {{-−0.001, π}, {-−0.005, 25}},
PlotStyle → Thickness[0.003], GridLines → All]

Out[92]=

In[21]:= NIntegrate[outzp, {t, 0, 3}]

Out[21]= {23.6933}

an =
-−400

n2 π

-−
400

n2 π

dn = n2 -− 102 + 100 n2

100 n2 + -−10 + n22

han = NTable
10 -− n2 an

dn
, {n, 1, 6}

{-−6.33103, -−0.438041, -−0.0157016, 0.0291849, 0.0280346, 0.0215052}

hbn = NTable
(10 n) an

dn
, {n, 1, 6}

{-−7.03447, -−1.46014, -−0.471047, -−0.194566, -−0.0934488, -−0.0496274}

eye = N[
50 + han[[1]] Cos[3] + hbn[[1]] Sin[3] + han[[3]] Cos[9] + hbn[[3]] Sin[9]]

55.0951

There is something obviously wrong with this problem somewhere. There is an absurdly 
large gap between what I am coming up (for steady state current) using the text answer 
and when using the state space model. This is in gross contrast to the results in section 2.9, 
when the state space model was on the money. However, back then the function went into 
cycles, whereas here it just rises. The problem description describes the function as 2π 
periodic, but I see no tendency to operate in a cycle.
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There is something obviously wrong with this problem somewhere. There is an absurdly 
large gap between what I am coming up (for steady state current) using the text answer 
and when using the state space model. This is in gross contrast to the results in section 2.9, 
when the state space model was on the money. However, back then the function went into 
cycles, whereas here it just rises. The problem description describes the function as 2π 
periodic, but I see no tendency to operate in a cycle.

19. E[t] = Piecewise200 t π2 t2, -−π < t < π, {0, -−∞ < t ≤ -−π}

In[68]:= Clear["Global`*⋆"]

First, setting up the electrical state space model just as if the domain were not piecewise.

In[69]:= eqns = eL q''[t] + aR q'[t] +
1

cC
q[t] ⩵ Vee[t];

In[70]:= m1 = StateSpaceModel[eqns,
{{q[t], 0}, {q'[t], 0}}, {{Vee[t], 0}}, {q'[t]}, t]

Out[70]=

0 1 0

-−
1

cC eL
-−
aR

eL

1

eL
0 1 0

𝒮

And putting in the capacitance, inductance, and resistance from the problem description.
In[71]:= mw = m1 /∕. {cC → 0.1, eL → 1, aR → 10}

Out[71]=

0 1 0
-−10. -−10 1
0 1 0

𝒮

And getting an output response for the interval where the voltage is non-zero. Note that 
part of this interval occurs where t is negative. What does a negative time value represent? 
The way Mathematica handles this situation is to ignore the negative time interval.

In[72]:= outz = OutputResponse{mw}, 200 t π2 t2, {t, -−π, π}

Out[72]= InterpolatingFunction Domain: {{0., 3.14}}
Output: scalar

[t]

In[73]:= NIntegrate[outz, {t, 0, 3}]

Out[73]= {2282.5}

And another output response for the interval where the voltage is zero and the time is 
positive.

In[51]:= outz0 = OutputResponse[{mw}, 0, {t, π, 20}]

Out[51]= InterpolatingFunction Domain: {{0., 20.}}
Output: scalar

[t]

And devising a plot for the positive t section. If this was a serious project, I would look into 
the possibility of moving everything to the right so that all time values would be positive. 
The plot below looks reasonable to me.
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And devising a plot for the positive t section. If this was a serious project, I would look into 
the possibility of moving everything to the right so that all time values would be positive. 
The plot below looks reasonable to me.

In[38]:= p1 = Plot[{outz}, {t, 0, π}, ImageSize → 350,
AspectRatio → 0.4, PlotRange → {{-−0.001, π}, {-−0.005, 3000}},
PlotStyle → Thickness[0.003], GridLines → All]

Out[38]=

In[61]:= Dn = 10 -− n22 + 100 n2

Out[61]= 100 n2 + 10 -− n22

In[62]:= An = (-−1)n+1
2400 10 -− n2

n2 Dn

Out[62]=
2400 (-−1)1+n 10 -− n2

n2 100 n2 + 10 -− n22

In[63]:= Bn = (-−1)n+1
24 000

n Dn

Out[63]=
24 000 (-−1)1+n

n 100 n2 + 10 -− n22

In[77]:= eye = N[
Simplify[ComplexExpand[Re[Sum[An Cos[n t] + Bn Sin[n t], {n, 1, ∞}]]]]];

In[66]:= eyet3 = eye /∕. t → 3

Out[66]= -−89.8515

Way off base. See the comments in problem 17.
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